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Abstract. ‘Antisymmetric’ correlation functions of the model of dense lattice polymers are proved
to be given by the generalized Kirchhoff theorem. In the continuum limit they coincide with the
correlation functions of the free complex Grassmann field that corresponds to the non-unitary
conformal field theory (CFT) withc = −2. Explicit expressions for the correlation functions are
found. These do not obey standard Wick rules due to the presence of zero mode. Nevertheless, the
complex Grassmann fieldθ can be considered as primary with conformal weight(hθ , h̄θ ) = (0, 0).
It is shown that the natural space of states wherein the operators of the theory act is the Krein space
with indefinite metric.

1. Introduction

The model of lattice polymers has a long history, dating back more then a century, when
Kirchhoff proved a beautiful theorem that the number of spanning trees (branching or dense
polymers) on the lattice ofN sites is given by the principal minors of theN ×N matrix of the
discrete Laplacian [1, 2]. Later it was realized that the statistics of polymers is closely related
to the statistics of spin models. In particular, Fortuin and Kasteleyn observed [3, 4] that the
partition functionZN of the q-component Potts model can be represented as a dichromatic
polynomial that continuously depends onq. Although the partition function of the model
vanishes in the formal limitq → 0 owing to zero mode of the discrete Laplacian, its derivative
with respect toq does not and gives the partition function of dense lattice polymers (spanning
trees). At about the same time de Gennes [5] explained how the partition function of dilute
polymers can be obtained from the partition function of theO(n)-model in the formal limit
n → 0. The nature of the phase transition from the high-temperature (dilute) phase to the
low-temperature (dense) phase has been the subject of many investigations [6–11]. Using a
series of model transformations Nienhuis [12] has shown how a particularO(n)model on the
hexagonal lattice can be mapped onto a coulombic gas. The properties of the critical point can
be deduced from this mapping and the exponents obtained in this way are in good agreement
with numerical estimates. Then, Parisi and Sourlas [13] explained how the limitn → 0 can
be avoided by considering the supersymmetric generalization of the Hamiltonian of theO(n)

model. They argued that the phase transition from the dilute to the dense phase corresponds
to the breakdown of supersymmetry. Saleur [14] suggested usingN = 2 superconformal field
theory to describe the properties of the dilute polymers. In this approach the dense phase has
been described by the ghost(ξ, η)-system with central chargec = −2.

In spite of all these efforts, the non-unitary conformal field theories (CFTs) that describe
the continuum limit of lattice polymers so far have not been fully understood. It is the purpose
of this paper to clarify some of the mathematical structures behind the non-unitary CFTs.
Namely, the following will be shown.
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(i) Although the partition function of theq-component Potts model vanishes in the formal
limit q → 0, some ‘antisymmetric’ 2γ -point correlation functions survive. These correlation
functions are given exactly by the minors of rank(N − γ ) of the Laplacian matrix. These
can be rewritten in terms of the integrals over anti-commuting variables and in the continuum
limit coincide with the correlation functions of the free complex Grassmann field. Explicit
expressions for the correlation functions are found which do not obey standard Wick rules
since the vacuum vector of the field theory has zero norm.

(ii) The natural space of states wherein the operators of the theory act is the Krein space
with indefinite metric [15]. The Krein spaceH is defined as a Hilbert space with definite
metric(x|y), and additional involutive unitary operator of canonical symmetryJ . An explicit
expression for the operator is given in terms of zero modes of the Grassmann field.

(iii) The basic property of thec = −2 CFT is that the correlation functions of the
primary fields with positive conformal weights are non-zero and satisfy the standard differential
equations of CFT only when calculated in the definite metric. In contrast, the correlation
functions of the primary fields with non-positive conformal weights should be defined in the
indefinite metric. Alternatively, the zero modes can be supressed by the Dirichlet operator that
imposes Dirichlet boundary conditions.

2. Dense lattice polymers

Let the latticeL haveN sites labelled 1, 2, . . . , N . With each sitei we associate a spin variable
σi which can takeq values, say 1, 2, . . . , q. Then the average of any operatorA(σ ) in the
q-component Potts model we define as (without a normalization factor!)

〈A(σ )〉 =
∑
σ

A(σ ) exp

{
βJ

∑
(ij)

δ(σi, σj )

}
. (1)

Hereσ -summation is over all spinsσ1, . . . , σN ; the second summation is over all edges of the
lattice.

Settingv = exp(βJ )− 1, then the partition function can be rewritten as

ZN = 〈1〉 =
∑
σ

∏
(ij)

(1 +vδ(σi, σj )). (2)

LetE be the number of edges of the latticeL. Then the summand in equation (2) is a product
of E factors. Each factor is the sum of two terms: 1 andvδ(σi, σj ), so the product can be
expanded as the sum of 2E terms.

Each of these 2E terms can be associated with a bond-graph on the latticeL. To do this,
note that the term is the product ofE factors, one for each edge. The factor for edge(ij)

is either 1 orvδ(σi, σj ): if it is the former, leave the edge empty, if the latter, place a bond
on the edge. Do this for all edges(ij). We then have a one-to-one correspondence between
bond-graphs onL and terms in the expansion of the product in equation (2).

Considering a typical bond-graphG, containingN sites,Lbonds,γ connected components
andω internal cycles. These are not independent, but must satisfy Euler’s relation

L + γ = N + ω. (3)

Then the corresponding term in the expansion contains a factorvL and the effect of delta
functions is that all sites within a component must have the same spinσ . Summing over all
independent spins and over all bond-graphsG that can be drawn onL we obtain [3, 4]

ZN =
∑
G
qγ vL. (4)

Note that hereq need not be an integer. We can formally allow it to be any real number and,
in particular, to consider the formal limitq → 0.
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Since we are going to deal with not only one- but arbitraryγ -component spanning trees,
we have to treat the limit in a different way from [3]. At first we consider the limitλ, q, v→ 0
while κ = q/λ andx = v/λ remain finite. As a result we obtain the partition function of
spanning trees with arbitrary number of components (lattice forests)

Z̃N = lim
λ→0

λ−NZN = lim
λ→0

∑
G
κγ λωxL =

∑
T
κγ xL. (5)

Here the last summation is over all bond-graphsT that have no internal cycles, i.e.ω = 0.
Such graphs are usually called spanning trees. The number of bondsL of the spanning tree is
related to the number of its componentsγ asL = N − γ . Hence, the partition function can
be rewritten as

Z̃N =
∑
γ

κγ
∑
Tγ
xL =

∑
γ

Nγ κγ xN−γ (6)

whereTγ denotes the set of differentγ -component spanning trees andNγ is their total number.
To simplify further notations we takex ≡ 1 without loss of generality.

The second limitκ → 0 leads to the critical point of the polymer model. Sinceγ > 1
the partition function in (6) obviously tends to zero in this limit. Nevertheless, the correlation
functions do not necessarily vanish. Indeed, repeating all the steps leading to equation (6) one
can prove that the following correlation functions survive in the limitκ → 0

lim
κ,λ→0

〈1〉 = 0 (7a)

lim
κ,λ→0

〈
δi1i2

〉 = N(i1i2) = constant (7b)

lim
κ,λ→0

〈∣∣∣∣ δi1i3 δi1i4
δi2i3 δi2i4

∣∣∣∣〉 = N(i1i3)(i2i4) −N(i1i4)(i2i3) (7c)

. . . .

Hereδi1i2 = (v/q)δ(σi1, σi2); N(i1i2) = N denotes the number of one-component spanning
trees with both the sitesi1 andi2 belonging to the same component (this number, obviously,
does not depend on the position of the sites);N(i1i3)(i2i4) is the number of two-component
spanning trees with sitesi1, i3 belonging to one component and sitesi2, i4 to the other; etc.

The antisymmetric combination ofδ in each 2γ -point correlation function is designed to
guard against any contribution of spanning trees with the number of components less thenγ

(otherwise this would be divergent). So, onlyγ -component spanning trees contribute to the
2γ -point correlation function in the limitκ → 0.

The importance of these ‘antisymmetric’ correlation functions is justified by the following
result.

Theorem 1 (Generalized Kirchhoff Theorem).Given a latticeL with N sites labelled
1, 2, ..., N , theN × N matrix of discrete Laplacian1ij has the elements:1ii = number
of edges incident toi,1ij = −number of edges with end pointsi andj . The minor1(i1)(i2) of
rank (N − 1) is obtained from the matrix1 by deletingi1th column andi2th row; similarly,
the minor1(i1i2)(i3i4) of rank(N −2) is obtained by deleting columnsi1 < i2 and rowsi3 < i4;
etc. Then the determinants

det1 = 0 (8a)

det1(i1)(i2) = N(i1i2) = constant (8b)

det1(i1i2)(i3i4) = N(i1i3)(i2i4) −N(i1i4)(i2i3) (8c)

. . .

coincide with the ‘antisymmetric’ correlation functions of equation (7).
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The standard proof of the original version of the theorem (first two lines of the sequence (8a, b))
can be found in [1]. Priezzhev [2] proposed an alternative proof of the original version in the
spirit of the combinatorial solution of the Ising model. His method can easily be generalized
to prove all other lines of equation (8).

There is a simple relation between the four-point correlation function (7c) and the Green
function of the discrete Laplacian operator. The most straightforward way to understand this
is follows. Let us replace every bond of the latticeL by a unit resistor and consider a current
I = 1 entering this lattice of resistors at a sitei1 and leaving it at a sitei2. Then, the voltage
difference between sitesi3 andi4 on the lattice is proportional to the four-point function (7c)

G(i1, i2|i3, i4) = N(i1i3)(i2i4) −N(i1i4)(i2i3)N
. (9)

This statement is a simple generalization of a similar graphical representation for the
Green function of the Laplacian operator with Dirichlet boundary conditions at the sitei0 [16].
Indeed, let us consider again the lattice of unit resistors grounded at the sitei0. This means
that the voltage at this site is always maintained equal to zero. If a currentI = 1 enters the
lattice at a sitei1 (and leaves it at the grounded sitei0) then the voltage at a sitei3 is given by
the Green function which has the following graphical representation

G0(i1|i3) = N(i1i3)(i0)N
(10)

whereN(i1i3)(i0) is the number of two-component spanning trees with the sitesi1 and i3
belonging to one component and the sitei0 to the other. This formula follows immediately
from equation (9) if we consider the limiti2, i4 → i0 and take into account the fact that
N(i1i0)(i3i0) ≡ 0.

3. Free complex Grassmann field

Using a matrix representation we can reinterpret the partition function of lattice polymers as
being the partition function of some artificial statistical system. To this end we define at each
site i of the latticeL the pair of anti-commuting variablesθi andθ∗i (its complex conjugate).
Then, using the Berezin definition of the integral over anti-commuting variables [20] we can
rewrite the determinant of the matrix1 as

det1 =
∫

dθ∗1 . . .dθN exp
∑
(ij)

θ∗i 1
ij θj

=
∫

dθ∗1 . . .dθN exp
∑
(ij)

(θ∗i − θ∗j )(θi − θj ). (11)

In the continuous limit this partition function defines field theory with the action

S(θ) = 1

4π

∫
∂µθ
∗∂µθ d2r. (12)

The average of any operatorA[θ ] we define as

〈A(θ)〉 =
∫
(dθ∗ dθ ]A[θ ] exp−S(θ). (13)

The accurate consideration of the continuous limit of the determinants of (8) leads to the
following explicit expressions for the correlation functions of the free complex Grassmann field

〈1〉 = 0 (14a)

〈θ∗1θ2〉 = 1 (14b)
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〈θ∗1θ∗2θ3θ4〉 = ln(η12
34) (14c)

〈θ∗1θ∗2θ∗3θ4θ5θ6〉 =
∣∣∣∣ ln(η12

45) ln(η12
56)

ln(η23
45) ln(η23

56)

∣∣∣∣ (14d)

. . . .

Note, that the fieldθ is scalar and its correlation functions depend only on the projectively
invariant cross-ratios

η12
34 =

(
r14r23

r13r24

)2

. . . . (15)

Hereθ1 ≡ θ(r1); r12 ≡ |r1−r2|. These correlation functions are asymptotics of the ‘antisym-
metric’ correlation functions of (7) in the continuum limit. The first two lines of the sequence
from equations (14a, b) have already appeared in [17].

The correlation functions of equation (14) look very unusual from the point of view of
standard field theory. First, the correlation functions of the free Grassmann field do not obey
standard Wick rules due to the presence of zero mode. Nevertheless, the Grassmann field can
be considered as the primary conformal field with the weight(hθ , h̄θ ) = (0, 0) (see [18] for
definitions).

To prove this, one has to consider the stress-energy tensor

T (z) =: ∂θ∗∂θ := lim
w→z

{
∂θ∗(z)∂θ(w) +

1

(z− w)2
}

(16)

and verify by direct calculation of the contour integral that this tensor is indeed the generator
of conformal transformations in the sense that for any correlation function〈X〉 = 〈θ∗1 . . . θ2N 〉
from the sequence of (14) its transformation law is given by

δε〈X〉 =
∮
C

dz ε(z)〈T (z)X〉 +
∮
C

dz̄ ε̄(z̄) 〈T̄ (z̄)X〉. (17)

Then, when inserted into any correlation function, the stress energy tensor satisfies the standard
operator product expansion

T (z)T (w) = c/2

(z− w)4 +
2T (w)

(z− w)2 +
∂T (w)

z− w (18)

with central chargec = −2. Finally, the correlation functions of the fieldθ satisfy the third-
order differential equation coming from the condition of degeneration of the operator(1, 3)
with weighth1,3 = 0 on the third level. This equation actually becomes of second order for
the field∂θ and, in its turn, coincides with the condition of degeneration of the operator(2, 1)
with weighth2,1 = 1 on the second level.

The twist fieldσ can be defined on the lattice by means of a construction similar to that
for the disorder operator in the Ising model [14]. Namely, consider a point on the dual lattice
(formed by the centres of faces of the original lattice) and draw some path on the dual lattice
from this point to infinity. Change the weights of all the bonds intersected by the path. The end
point of the dislocation line is called the disorder field or twist field. Its conformal properties
are similar to those of the Grassmann fieldθ . Namely, its correlation functions are non-trivial
even in the presence of zero mode. These correlation functions can be found from the condition
of degeneration of the operator(1, 2) with weighth1,2 = −1/8 on the second level [14]

〈σ1σ2〉 = √r12 (19a)

〈σ1σ2σ3σ4〉 = π√r12r34

√
|η(1− η)|{F(η)F̄ (1− η̄) + F̄ (η̄)F (1− η)} (19b)

whereF(η) = 2F1(1/2, 1/2; 1; η) is a hypergeometric function andη = (z13z24)/(z12z34).
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Mixed four-point correlation functions of the fieldsθ and σ can also be found using
standard techniques of CFT

〈θ∗1θ2σ3σ4〉 = 2
√
r34{H(η) + H̄ (η̄)}. (20)

HereH(η) = ln(
√
η +
√
η − 1).

This means that both the Grassmann fieldθ and its twist fieldσ can be considered
as primary conformal fields with weights(hθ , h̄θ ) = (0, 0) and (hσ , h̄σ ) = (−1/8,−1/8)
provided that the vacuum state has been defined as having zero norm. These fields are unique
in having both the property and non-positive conformal weights.

4. Krein space

We come now to the following question: what are the properties of the space of states wherein
the operators of the theory act? This, obviously, cannot be standard Hilbert space since the
vacuum vector of the theory has zero norm,〈0|0〉 = 0. Instead, we should consider the Krein
space with indefinite metric [15]. The Krein spaceH is defined as a Hilbert space with definite
metric(x|y) and additional involutive unitary operator of canonical symmetryJ

J = J−1 = J †. (21)

Using the operator of canonical symmetry one can introduce in the Hilbert spaceH the indefinite
metric

〈x|y〉 = (Jx|y). (22)

Thus, the Krein space admit canonical decomposition into the orthogonal sum of the two
subspaces

H = H+ ⊕H− = P +H⊕ P−H (23)

where

P + = 1 +J

2
P− = 1− J

2
(24)

are projectors to the states with positive and negative norms, respectively (in the indefinite
metric).

If the spectrum of an operatorA in the indefinite metric is real, Im〈x|A|x〉 = 0, it is called
J -Hermitean and satisfies the condition

JA†J = A. (25)

To define the operator of canonical symmetry, let us consider mode expansion of the
Grassmann fieldθ(z)

θ(z, z̄) = χ0 + θ0 ln |z|2 −
∑
n6=0

(
θn

n
z−n +

θ̄n

n
z̄−n

)
(26)

with the anticommutation relations [22, 23]

{χ∗0 , θ0} = −{χ0, θ
∗
0 } = 1 {θ∗n , θm} = n δn+m. (27)

The only operator we can construct from zero modes of the Grassmann field that satisfies all
the necessary conditions is

J = χ∗0χ0 + θ0θ
∗
0 + (χ∗0θ0 − χ0θ

∗
0 )− 2χ∗0χ0θ0θ

∗
0 . (28)

Indeed, this operator is involutive and unitary due to anticommutation relations in equation (27).
This operator is also invariant under the group SU(1, 1) of the global gauge transformations
of the action in (12).



Correlation functions of dense polymers 1697

Now, we can calculate the correlation functions of the Grassmann field both in the definite
and in the indefinite metric. Let us first introduce the vacuum vector|0) normalized in the
definite metric,(0|0) = 1 and let us assume thatθn|0) = 0 forn > 0 and(0|χ0 = 0, (0|θn = 0
for n < 0. In other words, in the definite metric we consider operatorsχ0 andθn with n < 0
as creation operators andθn with n > 0 as annihilation operators. Then, straightforward
calculation in the definite metric leads to the correlation functions that obey standard Wick
rules with the two-point function

(0|θ∗(z1, z̄1)θ(z2, z̄2)|0) = − ln |z1− z2|2. (29)

Simple analysis of the transformation properties of this equation leads to the conclusion
that the definite vacuumis not invariant under projective SL(2,C) transformations. This is
due to the fact that the Grassmann fieldθ is scalar and does not change under projective
transformations, whereas the right-hand side of the equation does change. Similar facts for
the ghost(ξ, η)-system have already been noticed by Dixonet al [24].

The same calculation in the indefinite metric with the right vacuum vector|0〉 = |0)
orthogonal to the left vacuum vector〈0| = (J |so that〈0|0〉 = (J |0) = 0 leads to the correlation
functions of (14). Hence, the indefinite vacuum is invariant under projective transformations.

To understand this better let us consider the Lourant expansion of the stress-energy tensor

T (z) =
∑
n

Lnz
−n−2. (30)

The Virasoro generators of conformal transformations can be written in terms of modes of the
Grassmann field as

Ln =
∑
k

θ∗n−kθk (31)

L0 = 2θ0θ
∗
0 +

∞∑
k=1

(θ∗−kθk − θ−kθ∗k ). (32)

The normal ordering in the definition of the operatorL0 which generate the uniform dilation
transformation,̃z = eεz, can be found from the transformation properties of the modes of the
scalar Grassmann field

χ̃0 = χ0 − 2εθ0 θ̃0 = θ0 θ̃n = enεθn. (33)

More generally, an operatorA changes under such a transformation as

Ã = eεL0A e−εL0. (34)

Note, that the generator of dilation transformationsL0 is J -Hermitean and, hence, all the
critical exponents of the theory are real.

Finally, let us note that although the right vacuum|0) does not change under the dilation
transformation, the left vacuum does change

˜|0) = eεL0|0) = |0) (35a)
˜(0| = (0|e−εL0 = (0| − 2ε(J |. (35b)

In contrast, both indefinite vacua are SL(2,C) invariant.
As an example of the field with positive conformal weight let us consider correlation

functions of the local energy operator

ε0 =: ∂µθ
∗∂µθ := lim

1→0
{∂µθ∗0∂µθ1− 4πδ(r01)}. (36)
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This is primary with conformal weight(hε, h̄ε) = (1, 1). Its correlation functions can be
found from equations (14) and are all trivial,〈ε1 . . . εN 〉 = 0, when calculated in the indefinite
metric. However, in the definite metric we have

(0|ε1ε2|0) = − 8

(r12)4
(37a)

(0|ε1ε2ε3ε4|0) = 64

(r12r34)4
+

64

(r13r24)4
+

64

(r14r23)4
. (37b)

This property is common for all primary fields with positive conformal weights. Their
correlation functions have to be calculated and are non-zero only in the definite metric.

We conclude that the physical meaning of the operator of canonical symmetryJ is to
subtract or add the zero mode of the Laplacian operator.

5. Dirichlet operator and Green function

There is another way to supress the zero mode of the Laplacian operator. Let us consider a
conducting plane with a currentI = 1 entering the plane at a pointr1 and leaving it at a point
r2. The voltage difference between sitesr3 andr4 on the plane is given by the four-point
function 〈θ∗1θ∗2θ3θ4〉. If the plane is grounded at the pointr0 and a currentI = 1 enters the
plane at a pointr1 (and leaves it at the grounded pointr0) then the voltage at a siter3 is given
by the Green functionG0(r1, r3).

The operatorD0 that corresponds to the grounded pointr0 can, obviously, be considered
as the product of the fieldθ0 with its complex conjugateθ∗0 at the same point. We will call it the
Dirichlet operatorsince it imposes the Dirichlet boundary conditions on the Grassmann field.
From the four-point correlation functions in equations (14c), (19b) and (20) we conclude that
the Dirichlet operator can be defined through either of the following two limits

D0 = lim
1→0

{
θ∗0θ1

} = lim
1→0

{
σ0σ1√
r01

}
. (38)

With the help of this operator the Green function with the Dirichlet boundary conditions at the
pointr0 can be represented as

G0(r1, r3) = lim
2,4→0
〈θ∗1θ∗2θ3θ4〉 = −〈D0θ

∗
1θ3〉. (39)

We have to be careful merging different points of the four-point functions since they diverge
logarithmically in the limit. These divergences are always present in the Green function in
the thermodynamic or continuous limit [19–21]. To treat them carefully we should introduce
the lower cut off∼a (lattice spacing) and should replace the vanishing distance between
different merging points by the square root from the metric on the plane at the same point:
lim1→0 r01 ∼ (g(r0)a

2)1/2. Thus, for the Green function we obtain

G0(r1, r3) = ln
(r10)

2(r30)
2

(r13)2g(r0)
(40)

where the factor∼ a2 is absorbed into the metric. It is well known and can be verified directly
from this equation that the Green function of the Laplacian operator with Dirichlet boundary
conditions is invariant under projective conformal transformations (see e.g. [21]). This is quite
natural since the Dirichlet operator has been defined as the product of scalar fieldsθ andθ∗.
The correlation functions of the Dirichlet operator can be found from the functions defined in
equations (14), (19) and (20) and are all projectively invariant

〈D1〉 = 1 〈D1D2〉 = ln
g1g2

(r12)4
. . . . (41)
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Since the correlation functions of the Dirichlet operator involve metric fields, the Dirichlet
operator is, obviously, not conformal.

Acknowledgments

The author would like to thank V B Priezzhev, H Saleur and V P Spiridonov for many
stimulating discussions. This work was supported by the Russian Foundation for Basic
Research through grant No. 97-01-01030.

References

[1] Harary F 1990Graph Theory(Reading, MA: Addison-Wesley)
[2] Priezzhev V B 1985Sov. Phys.–Usp.281125
[3] Fortuin E M and Kasteleyn P 1972Physica57536
[4] Baxter R J 1982Exactly Solved Models in Statistical Mechanics(London: Academic)
[5] de Gennes P G 1972Phys. Lett.A 38339
[6] Di Francesco P, Saleur H and Zuber J B 1987J. Stat. Phys.4957

Di Francesco P, Saleur H and Zuber J B 1987Nucl. Phys.B 285454
[7] Saleur H 1987Phys. Rev.B 353667
[8] Saleur H 1986J. Phys. A: Math. Gen.19L807
[9] Duplantier B and Saleur H 1987Nucl. Phys.B 290291

[10] David F and Duplantier B 1988J. Stat. Phys.51327
[11] Saleur H and Duplantier B 1987Phys. Rev. Lett.582325
[12] Nienhuis B 1982Phys. Rev. Lett.491062
[13] Parisi G and Sourlas N 1980J. Physique41L403
[14] Saleur H 1992Nucl. Phys.B 382486
[15] Iohvidov I S, Krein M G and Langer H 1982Introduction to the Spectral Theory of Operators in Spaces with

an Indefinite Metric(Berlin: Akademie)
[16] Ivashkevich E V, Ktitarev D V and Priezzhev V B 1994J. Phys. A: Math. Gen.27L585
[17] Gurarie V, Flohr M and Nayak C 1997Nucl. Phys.B 498513
[18] Belavin A A, Polyakov A M and Zamolodchikov A B 1984Nucl. Phys.B 241333
[19] Spitzer F 1964Principles of Random Walk(New York: Van Nostrand)
[20] Itzykson C and Drouffe J-M 1991Statistical Field Theory(Cambridge: Cambridge University Press)
[21] Polyakov A M 1987Gauge Fields and Strings(New York: Harwood Academic)
[22] Gurarie V 1993Nucl. Phys.B 410535
[23] Kausch H GPreprinthep-th/9510149
[24] Dixon L, Friedan D, Martinec E and Shenker S 1987Nucl. Phys.B 28213


